This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/pow_of_matrix"
#include <atcoder/modint>
#include <iostream>
#include "math/matrix.hpp"
using mint = atcoder::modint998244353;
int main() {
int n;
long long k;
std::cin >> n >> k;
matrix<mint> a(n, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int x;
std::cin >> x;
a[i][j] = mint::raw(x);
}
}
matrix b = a.pow(k);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
std::cout << b[i][j].val() << " \n"[j == n - 1];
}
}
}#line 1 "test/library-checker/pow_of_matrix.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/pow_of_matrix"
#include <atcoder/modint>
#include <iostream>
#line 2 "math/matrix.hpp"
#include <vector>
template <typename T>
struct matrix {
public:
matrix() {
}
matrix(size_t n, size_t m) : a(n, std::vector<T>(m, 0)) {
}
matrix(std::vector<std::vector<T>> _a) {
for (size_t i = 1; i < _a.size(); i++) {
assert(_a[0].size() == _a[i].size());
}
a = std::move(_a);
}
matrix(std::vector<T> _a) {
a.resize(_a.size());
for (size_t i = 0; i < a.size(); i++) {
a[i].resize(1);
a[i][0] = _a[i];
}
}
static matrix e(size_t n) {
matrix ret(n, n);
for (size_t i = 0; i < n; i++) ret[i][i] = 1;
return ret;
}
inline const std::vector<T>& operator[](int i) const {
return a[i];
}
inline std::vector<T>& operator[](int i) {
return a[i];
}
matrix& operator*=(const matrix& rhs) {
assert(a[0].size() == rhs.a.size());
std::vector ret(a.size(), std::vector<T>(rhs[0].size(), 0));
for (size_t i = 0; i < a.size(); i++) {
for (size_t j = 0; j < rhs[0].size(); j++) {
for (size_t k = 0; k < a[0].size(); k++) {
ret[i][j] += a[i][k] * rhs[k][j];
}
}
}
a = std::move(ret);
return *this;
}
matrix operator*(const matrix& rhs) const {
return matrix(*this) *= rhs;
}
matrix pow(long long k) const {
assert(0 <= k);
matrix x = *this, ret = matrix::e(a.size());
while (k > 0) {
if (k & 1) ret *= x;
x *= x;
k >>= 1;
}
return ret;
}
private:
std::vector<std::vector<T>> a;
};
#line 6 "test/library-checker/pow_of_matrix.test.cpp"
using mint = atcoder::modint998244353;
int main() {
int n;
long long k;
std::cin >> n >> k;
matrix<mint> a(n, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int x;
std::cin >> x;
a[i][j] = mint::raw(x);
}
}
matrix b = a.pow(k);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
std::cout << b[i][j].val() << " \n"[j == n - 1];
}
}
}